3.507 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=386 \[ \frac{2 a^{3/4} \sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{a} f+5 \sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{15 \sqrt{a+b x^4}}-\frac{12 a^{5/4} \sqrt [4]{b} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{1}{12} \left (a+b x^4\right )^{3/2} \left (\frac{3 c}{x^4}+\frac{4 d}{x^3}+\frac{6 e}{x^2}+\frac{12 f}{x}\right )+\frac{3}{4} b \sqrt{a+b x^4} \left (c+e x^2\right )-\frac{3}{4} \sqrt{a} b c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{2}{15} b x \sqrt{a+b x^4} \left (5 d+9 f x^2\right )+\frac{3}{4} a \sqrt{b} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{12 a \sqrt{b} f x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )} \]

[Out]

(12*a*Sqrt[b]*f*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) + (3*b*(c + e*x^2
)*Sqrt[a + b*x^4])/4 + (2*b*x*(5*d + 9*f*x^2)*Sqrt[a + b*x^4])/15 - (((3*c)/x^4
+ (4*d)/x^3 + (6*e)/x^2 + (12*f)/x)*(a + b*x^4)^(3/2))/12 + (3*a*Sqrt[b]*e*ArcTa
nh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/4 - (3*Sqrt[a]*b*c*ArcTanh[Sqrt[a + b*x^4]/Sq
rt[a]])/4 - (12*a^(5/4)*b^(1/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt
[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a +
 b*x^4]) + (2*a^(3/4)*b^(1/4)*(5*Sqrt[b]*d + 9*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2
)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(
1/4)], 1/2])/(15*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.775501, antiderivative size = 386, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 15, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5 \[ \frac{2 a^{3/4} \sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{a} f+5 \sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{15 \sqrt{a+b x^4}}-\frac{12 a^{5/4} \sqrt [4]{b} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{1}{12} \left (a+b x^4\right )^{3/2} \left (\frac{3 c}{x^4}+\frac{4 d}{x^3}+\frac{6 e}{x^2}+\frac{12 f}{x}\right )+\frac{3}{4} b \sqrt{a+b x^4} \left (c+e x^2\right )-\frac{3}{4} \sqrt{a} b c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{2}{15} b x \sqrt{a+b x^4} \left (5 d+9 f x^2\right )+\frac{3}{4} a \sqrt{b} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{12 a \sqrt{b} f x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^5,x]

[Out]

(12*a*Sqrt[b]*f*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) + (3*b*(c + e*x^2
)*Sqrt[a + b*x^4])/4 + (2*b*x*(5*d + 9*f*x^2)*Sqrt[a + b*x^4])/15 - (((3*c)/x^4
+ (4*d)/x^3 + (6*e)/x^2 + (12*f)/x)*(a + b*x^4)^(3/2))/12 + (3*a*Sqrt[b]*e*ArcTa
nh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/4 - (3*Sqrt[a]*b*c*ArcTanh[Sqrt[a + b*x^4]/Sq
rt[a]])/4 - (12*a^(5/4)*b^(1/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt
[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a +
 b*x^4]) + (2*a^(3/4)*b^(1/4)*(5*Sqrt[b]*d + 9*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2
)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(
1/4)], 1/2])/(15*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**5,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 1.51293, size = 329, normalized size = 0.85 \[ \frac{144 a^{3/2} \sqrt{b} f x^4 \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (-\left (a+b x^4\right ) \left (5 a \left (3 c+4 d x+6 x^2 (e+2 f x)\right )-b x^4 (30 c+x (20 d+3 x (5 e+4 f x)))\right )-45 \sqrt{a} b c x^4 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+45 a \sqrt{b} e x^4 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )\right )-16 a \sqrt{b} x^4 \sqrt{\frac{b x^4}{a}+1} \left (9 \sqrt{a} f+5 i \sqrt{b} d\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{60 x^4 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^5,x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(-((a + b*x^4)*(5*a*(3*c + 4*d*x + 6*x^2*(e + 2*f*x))
 - b*x^4*(30*c + x*(20*d + 3*x*(5*e + 4*f*x))))) + 45*a*Sqrt[b]*e*x^4*Sqrt[a + b
*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]] - 45*Sqrt[a]*b*c*x^4*Sqrt[a + b*x^4
]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) + 144*a^(3/2)*Sqrt[b]*f*x^4*Sqrt[1 + (b*x^4)
/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 16*a*Sqrt[b]*((5*I)*
Sqrt[b]*d + 9*Sqrt[a]*f)*x^4*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqr
t[b])/Sqrt[a]]*x], -1])/(60*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x^4*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.028, size = 409, normalized size = 1.1 \[{\frac{bc}{2}\sqrt{b{x}^{4}+a}}-{\frac{ac}{4\,{x}^{4}}\sqrt{b{x}^{4}+a}}-{\frac{3\,bc}{4}\sqrt{a}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ) }-{\frac{ad}{3\,{x}^{3}}\sqrt{b{x}^{4}+a}}+{\frac{xbd}{3}\sqrt{b{x}^{4}+a}}+{\frac{4\,bda}{3}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{be{x}^{2}}{4}\sqrt{b{x}^{4}+a}}+{\frac{3\,ae}{4}\sqrt{b}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ) }-{\frac{ae}{2\,{x}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{af}{x}\sqrt{b{x}^{4}+a}}+{\frac{bf{x}^{3}}{5}\sqrt{b{x}^{4}+a}}+{{\frac{12\,i}{5}}f{a}^{{\frac{3}{2}}}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{12\,i}{5}}f{a}^{{\frac{3}{2}}}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^5,x)

[Out]

1/2*c*b*(b*x^4+a)^(1/2)-1/4*c*a/x^4*(b*x^4+a)^(1/2)-3/4*c*a^(1/2)*b*ln((2*a+2*a^
(1/2)*(b*x^4+a)^(1/2))/x^2)-1/3*d*a*(b*x^4+a)^(1/2)/x^3+1/3*d*b*x*(b*x^4+a)^(1/2
)+4/3*d*a*b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/
2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1
/4*e*b*x^2*(b*x^4+a)^(1/2)+3/4*e*b^(1/2)*a*ln(b^(1/2)*x^2+(b*x^4+a)^(1/2))-1/2*e
*a/x^2*(b*x^4+a)^(1/2)-f*a*(b*x^4+a)^(1/2)/x+1/5*f*b*x^3*(b*x^4+a)^(1/2)+12/5*I*
f*a^(3/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I
/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2
),I)-12/5*I*f*a^(3/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2
)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b
^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b f x^{7} + b e x^{6} + b d x^{5} + b c x^{4} + a f x^{3} + a e x^{2} + a d x + a c\right )} \sqrt{b x^{4} + a}}{x^{5}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="fricas")

[Out]

integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d*x + a*
c)*sqrt(b*x^4 + a)/x^5, x)

_______________________________________________________________________________________

Sympy [A]  time = 15.644, size = 379, normalized size = 0.98 \[ \frac{a^{\frac{3}{2}} d \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac{1}{4}\right )} - \frac{a^{\frac{3}{2}} e}{2 x^{2} \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{a^{\frac{3}{2}} f \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{3 \sqrt{a} b c \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{4} + \frac{\sqrt{a} b d x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} + \frac{\sqrt{a} b e x^{2} \sqrt{1 + \frac{b x^{4}}{a}}}{4} - \frac{\sqrt{a} b e x^{2}}{2 \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} b f x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{7}{4}\right )} - \frac{a \sqrt{b} c \sqrt{\frac{a}{b x^{4}} + 1}}{4 x^{2}} + \frac{a \sqrt{b} c}{2 x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} + \frac{3 a \sqrt{b} e \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{4} + \frac{b^{\frac{3}{2}} c x^{2}}{2 \sqrt{\frac{a}{b x^{4}} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**5,x)

[Out]

a**(3/2)*d*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*
x**3*gamma(1/4)) - a**(3/2)*e/(2*x**2*sqrt(1 + b*x**4/a)) + a**(3/2)*f*gamma(-1/
4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - 3*sq
rt(a)*b*c*asinh(sqrt(a)/(sqrt(b)*x**2))/4 + sqrt(a)*b*d*x*gamma(1/4)*hyper((-1/2
, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(5/4)) + sqrt(a)*b*e*x**2*sqrt
(1 + b*x**4/a)/4 - sqrt(a)*b*e*x**2/(2*sqrt(1 + b*x**4/a)) + sqrt(a)*b*f*x**3*ga
mma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(7/4)) - a
*sqrt(b)*c*sqrt(a/(b*x**4) + 1)/(4*x**2) + a*sqrt(b)*c/(2*x**2*sqrt(a/(b*x**4) +
 1)) + 3*a*sqrt(b)*e*asinh(sqrt(b)*x**2/sqrt(a))/4 + b**(3/2)*c*x**2/(2*sqrt(a/(
b*x**4) + 1))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{4} + a\right )}^{\frac{3}{2}}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^5, x)